Laboratories

Print

Cellular Senescence

Update : 2023-11-29

Overview

Cellular senescence is the state of irreversible cell cycle arrest provoked by a variety of potentially oncogenic stimuli, such as telomere shortening, DNA damage or activation of certain oncogenes. Cellular senescence appears to be acting as a barrier to cancer, preventing damaged cells from undergoing aberrant proliferation. On the other hand, it has been proven that senescent cells are accumulating during aging process throughout living body and secrete many inflammatory proteins into the surrounding extracellular fluid. This phenomenon is called senescence-associated secretory phenotype (SASP), suggesting that SASP factors promote some age-associated diseases such as chronic inflammation and cancer. We have tried to reveal the molecular mechanisms why SASP factor gene expressions are upregulated in senescent cells. In our laboratory, we are aiming to understand the molecular mechanisms of cellular senescence and SASP. Our research will provide valuable new insights into the development of age-associated pathology including cancer and provide us new possibilities of its control.

Original Web Site

Publications

Chiba, M., Miyata, K., Okawa, H., Tanaka, Y., Ueda, K., Seimiya, H. and Takahashi, A.
YBX1 regulates satellite II RNA loading into small extracellular vesicles and promotes the senescent phenotype.
International Journal of Molecular Sciences, 24(22), 16399 (2023)
Qian, J., Zhou, X., Tanaka, K. and Takahashi, A.
Alteration in the chromatin landscape during the DNA damage response: Continuous rotation of the gear driving cellular senescence and aging.
DNA Repair, 131, 103572 (2023)
Miyata, K., Zhou, X., Nishio, M., Hanyu, A., Chiba, M., Kawasaki, H., Osako, T., Takeuchi, K., Ohno, S., Ueno, T., Maruyama, R. and Takahashi, A.
Chromatin conformational changes at human satellite II contribute to the senescence phenotype in the tumor microenvironment.
Proc. Natl. Acad. Sci. U. S. A., 120, e230504, 6120 (2023)
Misawa, T., Hitomi, K., Miyata, K., Tanaka, Y., Fujii, R., Chiba, M., Loo, T.M., Hanyu, A., Kawasaki, H., Kato, H., Maezawa, Y., Yokote, K., Nakamura, A.J., Ueda, K., Yaegashi, N. and Takahashi, A.
Identification of novel senescent markers in small extracellular vesicles.
International Journal of Molecular Sciences, 24 (3), 2421 (2023)
Ebata, H., Loo, T.M. and Takahashi, A.
Telomere Maintenance and the cGAS-STING Pathway in Cancer.
Cells, 11(12), 1958, (2022)
Sugawara, S., Okada, R., Loo, T.M., Tanaka, H., Miyata, K., Chiba, M., Kawasaki, H., Katoh, K., Kaji, S., Maezawa, Y., Yokote, K., Nakayama, M., Oshima, M., Nagao, K., Obuse, C., Nagayama, S., Nakanishi, A., Kanemaki, MT., Hara, E. and Takahashi, A.
RNaseH2A downregulation drives chromosomal DNA fragmentation and accumulation of RNA-DNA hybrids in senescent cells.
Communications Biology, 5, 1420(2022).
Igarashi, N., Miyata, K., Loo, T.M., Chiba, M., Hanyu, A., Nishio, M., Kawasaki, H., Zheng, H., Toyokuni, S., Kon, S., Moriyama, K., Fujita, Y. and Takahashi, A.
Hepatocyte growth factor derived from senescent cells attenuates cell competition-induced apical elimination of oncogenic cells.
Nature Communications, 13, 4157, (2022).
Okumura, S., Konishi, Y., Narukawa, M., Sugiura, Y, Yoshimoto, S., Arai, Y., Sato, S., Yoshida, Y., Tsuji, S., Uemura, K., Wakita, M., Matsudaira, T., Matsumoto, T., Kawamoto, S., Takahashi, A., Itatani, Y., Miki, H., Takamatsu, M, Obama, K., Takeuchi, K., Suematsu, M., Ohtani, N., Fukunaga, Y., Ueno, M., Sakai, Y., Nagayama, S. and Hara, E.
Identification of gut bacteria abundant in CRC patients that promote tumourigenesis via butyrate secretion.
Nature Communications, 12(1), 5674 (2021)
Miyata, K., Imai, Y., Hori, S., Nishio, M., Loo, T.M., Okada, R., Yang, L., Nakadai, T., Maruyama, R., Fujii, R., Ueda, K., Jiang, Li., Zheng, H., Toyokuni, S., Sakata, T., Shirahige, K., Kojima, R., Nakayama, M., Oshima, M., Nagayama, S., Seimiya, H., Hirota, T., Saya, H., Hara, E. and Takahashi, A.
Pericentromeric noncoding RNA changes DNA binding of CTCF and inflammatory gene expression in senescence and cancer.
Proc. Natl. Acad. Sci. U.S.A., 118(35), e2025647118 (2021)
Obara, R., Kamiya, M., Tanaka, Y., Kojima, R., Kawaguchi, T., Sugawara, M., Takahashi, A., Noda, T. and Urano, Y.
GGT-activatable fluorescence probe for durable tumor imaging.
Angewandte Chemie Int. Edi., 60(4), 2125-2129 (2021)
Hitomi, K., Okada, R., Loo, T.M., Miyata, K., Nakamura, A.J. and Takahashi, A.
DNA damage regulates senescence-associated extracellular vesicle release via the ceramide pathway to prevent excessive inflammatory responses.
International Journal of Molecular Sciences, 21(10), 3720 (2020)
Wakita, M., Takahashi, A., Sano, O., Loo, T.M., Imai, Y., Narukawa, M., Iwata, H., Matsudaira, T., Kawamoto, K., Ohtani, N., Yoshimori, T. and Hara, E.
A BET family protein degrader provokes senolysis by targeting NHEJ and autophagy in senescent cells.
Nature Communications, 11, 1935 (2020)
Loo, T.M., Miyata, K., Tanaka, Y. and Takahashi, A.
Cellular senescence and senescence‐associated secretory phenotype via the cGAS‐STING signaling pathway in cancer
Cancer Science, 111, 304-311 (2020)
Takahashi, A., Loo, T.M., Okada, R., Kamachi, F., Watanabe, Y., Wakita, M., Watanabe, S., Kawamoto, S., Miyata, K., Barber, G.N., Ohtani, N. and Hara, E.
Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells.
Nature Communications, 9, 1249 (2018)
Takasugi, M., Okada, R., Takahashi, A., Chen, D., Watanabe, S. and Hara, E.
Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2.
Nature Communications, 8, 15729 (2017).
*Takahashi, A., Okada, R., Nagao, K., Kawamata, Y., Hanyu, A., Yoshimoto, S., Takasugi, M., Watanabe, S., Kanemaki, M., Obuse, C. and *Hara, E.
Exosomes maintain cellular homeostasis by excreting harmful DNA from cells.
Nature Communications8, 15287 (2017)
(*Takahashi and Hara are co-corresponding to this paper.)
*Sato, S., *Kawamata, Y., *Takahashi, A., *Imai, Y., Hanyu, A., Okuma, A., Takasugi, M., Yamakoshi, K, Sorimachi, H., Sone, S., Nishioka, Y, Ohtani, N. and Hara, E.
Ablation of the p16INK4a tumour suppressor reverses ageing phenotypes of klotho mice.
Nature Communications, 6: 7035 (2015)
(*Sato, Kawamata, Takahashi and Imai contributed equally to this paper.)
Imai, Y., Takahashi, A., Hanyu, A., Hori, S., Sato, S., Naka, K., Hirao, A., Ohtani, N. and Hara, E.
Crosstalk between the Rb Pathway and AKT Signaling Forms a Quiescence-Senescence Switch.
Cell Rep., 7, 194-207 (2014) 
Takahashi, A., Imai, Y., Yamakoshi, K., Kuninaka, S., Ohtani, N., Yoshimoto, S., Hori, S., Tachibana, M., Anderton, E., Takeuchi, T., Shinkai, Y., Peters, G., Saya, H. and Hara, E.
DNA Damage Signaling Triggers Degradation of Histone Methyltransferases through APC/C(Cdh1) in Senescent Cells.
Mol Cell. 45, 123-131 (2012)
Takeuchi, S., Takahashi, A., Motoi, N., Tajima, T., Yamakoshi, K., Yoshimoto, S., Hirao, A., Yanagi, S., Fukami, K., Ishikawa, Y., Sone, S. and Hara, E.
Intrinsic cooperation between p16INK4a and p21Waf1/Cip1 in the onset of cellular senescence and tumor suppression in vivo.
Cancer Res. 70, 9381-9390 (2010)
*Yamakoshi, K., *Takahashi, A., Hirose, F., Nakayama, R., Ishimaru, N., Kubo, Y., Mann, D.J., Ohmura, M., Hirao, A., Saya, H., Arase, S., Hayashi, Y., Nakao, K., Matsumoto, M., Ohtani, N. and Hara, E.
Real-time in vivo imaging of p16Ink4a reveals crosstalk with p53.
J. Cell Biol., 186, 393-407 (2009)
(*Yamakoshi and Takahashi contributed equally to this paper.)
Takahashi, A., Ohtani, N., Yamakoshi, K., Iida, S., Tahara, H.,Nakayama, K., Nakayama, K.I., Ide, T., Saya, H. and Hara, E.
Mitogenic signalling and the p16INK4a/Rb pathway co-operate to enforce irreversible cellular senescence.
Nature Cell Biol., 8, 1291-1297 (2006)

Contact

Project for Cellular senescence (Chief)
The Cancer Institute for Japanese Foundation for Cancer Research
3-8-31, Ariake, Koto-ku, Tokyo 135-8550 Japan
Phone??? +81-3-3520-0111 (Ext. 5351)
Fax: +81-3-3570-0457

Return to Top of Page